- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Corsten, Jan (1)
-
DeBiasio, Louis (1)
-
McKenney, Paul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory: In every 2-coloring of$$K_n$$, there is a monochromatic path on$$\lceil (2n+1)/3\rceil $$vertices, and this is best possible. There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in [31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]). In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and Gyárfás result: What is the largestdsuch that in every$$2$$-coloring of$$K_{\mathbb {N}}$$there is a monochromatic infinite path with upper density at leastd? Erdős and Galvin showed that$$2/3\leq d\leq 8/9$$, and after a series of recent improvements, this problem was finally solved in [7] where it was shown that$$d={(12+\sqrt {8})}/{17}$$. This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite case, and other (unexpected) results which have no analogue in the finite case.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
